Structural Insights Into DNA Repair by RNase T—An Exonuclease Processing 3′ End of Structured DNA in Repair Pathways

نویسندگان

  • Yu-Yuan Hsiao
  • Woei-Horng Fang
  • Chia-Chia Lee
  • Yi-Ping Chen
  • Hanna S. Yuan
چکیده

DNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation. RNase T specifically trims the 3' end of structured DNA, including bulge, bubble, and Y-structured DNA, and it can work with Endonuclease V to restore the deaminated base in an inosine-containing heteroduplex DNA. Crystal structure analyses further reveal how RNase T recognizes the bulge DNA by inserting a phenylalanine into the bulge, and as a result the 3' end of blunt-end bulge DNA can be digested by RNase T. In contrast, the homodimeric RNase T interacts with the Y-structured DNA by a different binding mode via a single protomer so that the 3' overhang of the Y-structured DNA can be trimmed closely to the duplex region. Our data suggest that RNase T likely processes bulge and bubble DNA in the Endonuclease V-dependent DNA repair, whereas it processes Y-structured DNA in UV-induced and various other DNA repair pathways. This study thus provides mechanistic insights for RNase T and thousands of DnaQ-like exonucleases in DNA 3'-end processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bulge, Bubble, and Y: How an RNA Exonuclease Repairs DNA, in Detail

For a cell, it’s not so much death or taxes, but damage to its DNA, that is inevitable. Chemicals, radiation, and ultraviolet light all take their toll, disrupting the double helix and leaving dangerous chaos in their wake. The genome in virtually every cell in every organism suffers such damage multiple times over its lifespan. Left unrepaired, such disruptions would quickly leave the cell eit...

متن کامل

How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T–product complexes

Exonucleases are key enzymes in the maintenance of genome stability, processing of immature RNA precursors and degradation of unnecessary nucleic acids. However, it remains unclear how exonucleases digest nucleic acids to generate correct end products for next-step processing. Here we show how the exonuclease RNase T stops its trimming precisely. The crystal structures of RNase T in complex wit...

متن کامل

Bacillus subtilis polynucleotide phosphorylase 3′-to-5′ DNase activity is involved in DNA repair

In the presence of Mn(2+), an activity in a preparation of purified Bacillus subtilis RecN degrades single-stranded (ss) DNA with a 3' --> 5' polarity. This activity is not associated with RecN itself, because RecN purified from cells lacking polynucleotide phosphorylase (PNPase) does not show the exonuclease activity. We show here that, in the presence of Mn(2+) and low-level inorganic phospha...

متن کامل

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

Identification of RNase T as a high-copy suppressor of the UV sensitivity associated with single-strand DNA exonuclease deficiency in Escherichia coli.

There are three known single-strand DNA-specific exonucleases in Escherichia coli: RecJ, exonuclease I (ExoI), and exonuclease VII (ExoVII). E. coli that are deficient in all three exonucleases are abnormally sensitive to UV irradiation, most likely because of their inability to repair lesions that block replication. We have performed an iterative screen to uncover genes capable of ameliorating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2014